Underwriting and onboarding optimization continues to be vitally important for life insurers. Digitization coupled with AI-powered tools may be the key to providing real solutions, via vastly increased power to sift, organize, and analyze customer and insurer data, automate processes, and better segment customers.
The market has already seen extensive lists outlining the myriad ways AI-powered digital solutions can improve data discovery, strengthen analytics, and ultimately speed and simplify underwriting and onboarding processes.
New data mining and analytical capabilities as well as new technologies are also bringing to light a broader range of personal metrics categories that are proving to be effective indicators of mortality and morbidity risk. Insurers are using these metrics in innovative new ways to refine underwriting, pricing, and product development.
It is important to be aware, however, that although incorporating these new tools will be an exciting step forward, maintaining appropriate risk mitigation frameworks remains an ongoing challenge. Insurers can turn to existing model risk management processes to evaluate the risks inherent in expanding the use of data via AI and other digital tools.
Powerful Tools
Optical character recognition (OCR) and natural language processing (NLP) technologies have significantly improved over the past two decades. Software now exists that can efficiently sift through and mine pertinent data in hundreds of pages of medical records information and produce a cogent report for underwriters – a process that until recently had to be done by humans. The enhanced contextual intelligence capabilities now available can also correctly correlate information in the report, even if, for example, the mention of a particular drug is many pages distant from that of the condition it treats.
These improved capabilities are enabling new alternative underwriting data categories, which are proving effective predictors of mortality and morbidity risk. The traditional underwriting factors of health status, financial status, occupations, avocations, and travel habits have now expanded to include education, residency and work locations, marital status, physical activity, premium payment frequency, past claims and credit information, and more.
Besides standard wearables data, which have been factored into risk assessment for years, underwriters are also incorporating new technologies. For example, remote photoplethysmography (rPPG) using a phone video camera can detect subcutaneous blood volume changes and through that, measure heart rate, heart rate variability, blood pressure, and more. Coupled with AI and data models, rPPG could derive more blood parameters, such as blood sugar, blood cholesterol levels, and more. Much of this is still under development and will need time to reach the accuracy levels necessary to be part of the insurance onboarding process.
Additionally, AI tools are making possible more precise population segmentation using the many new alternative data points. So not just product design and underwriting, but onboarding as well, can be customized for multiple cohorts of target consumers.